
MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented
Reinforcement in Embodied Systems

Anirudh Chari * 1 2 Suraj Reddy * 1 2 Aditya Tiwari 1 Richard Lian 1 2 Brian Zhou 1 3

Abstract

While large language models (LLMs) have shown
promising capabilities as zero-shot planners for
embodied agents, their inability to learn from ex-
perience and build persistent mental models lim-
its their robustness in complex open-world envi-
ronments like Minecraft. We introduce MIND-
STORES, an experience-augmented planning
framework that enables embodied agents to build
and leverage mental models through natural in-
teraction with their environment. Drawing in-
spiration from how humans construct and refine
cognitive mental models, our approach extends
existing zero-shot LLM planning by maintain-
ing a database of past experiences that informs
future planning iterations. The key innovation
is representing accumulated experiences as nat-
ural language embeddings of (state, task, plan,
outcome) tuples, which can then be efficiently
retrieved and reasoned over by an LLM planner
to generate insights and guide plan refinement
for novel states and tasks. Through extensive
experiments in the MineDojo environment, a sim-
ulation environment for agents in Minecraft that
provides low-level controls for Minecraft, we find
that MINDSTORES learns and applies its knowl-
edge significantly better than existing memory-
based LLM planners while maintaining the flexi-
bility and generalization benefits of zero-shot ap-
proaches, representing an important step toward
more capable embodied AI systems that can learn
continuously through natural experience.

*Equal contribution 1a37.ai, San Francisco, CA, USA
2Massachusetts Institute of Technology, Cambridge, MA,
USA 3Harvard University, Cambridge, MA, USA. Correspon-
dence to: Suraj Reddy <surajrdy@mit.edu>, Anirudh Chari
<anichari@mit.edu>.

1. Introduction
Recent advances in large language models (LLMs) have
demonstrated enhanced capabilities in reasoning (Plaat et al.,
2024; Huang & Chang, 2023), planning (Sel et al., 2025),
and decision-making (Huang et al., 2024) through methods
that strengthen analytical depth. Among the numerous do-
mains of active innovation, the success of AI agents serve
as a critical benchmark for assessing our progress toward
generally capable artificial intelligence (Brown et al., 2020).

Building embodied agents—AI systems with physical
form—that learn continuously from real-world interactions
through persistent memory and adaptive reasoning remains
a fundamental challenge in the future of artificial intelli-
gence. Classical approaches, such as reinforcement learning
(Dulac-Arnold et al., 2021) and symbolic planning (Zheng
et al., 2025), struggle with scalability, irreversible errors,
and rigid assumptions in complex environments.

A promising paradigm for such agents leverages LLMs as
high-level planners (Jeurissen et al., 2024): the LLM de-
composes abstract goals into step-by-step plans (e.g., “mine
wood → craft tools → smelt iron”), while a low-level con-
troller translates these plans into environment-specific ac-
tions (e.g., movement, object interaction). This “brain and
body” architecture capitalizes on the LLM’s capacity for
structured reasoning while grounding its outputs in the dy-
namics of the physical world—a critical capability for real-
world applications like robotic manipulation (Shentu et al.,
2024; Bhat et al., 2024; Wang et al., 2024b), autonomous
navigation (Zawalski et al., 2024), and adaptive disaster
response.

While recent LLM-based agents show promise in generat-
ing action plans for embodied tasks, many lack experiential
learning, i.e., the ability to apply insights from past expe-
riences to planning for future tasks. Unlike humans—who
build mental models to generalize insights, avoid errors, and
reason counterfactually (e.g., “Crafting a stone pickaxe first
would enable iron mining”)—existing agents cannot syn-
thesize persistent representations of past interactions. This
gap hinders their ability to tackle long-horizon tasks in open
worlds like Minecraft, where success requires inferring ob-
jectives, recovering from failures, and transferring insights

1

ar
X

iv
:2

50
1.

19
31

8v
1 

 [
cs

.A
I]

  3
1 

Ja
n 

20
25



MINDSTORES

Input

Review Experience

Plan Generation

Predict Outcome

Execute

Record

Failure
M

anagem
entN

ex
tI

te
ra

tio
n

Task: Mine Iron

Review: Previous experiences for mining needs a pickaxe!

Plan: Mine , craft , mine , craft , mine

Predict: Probable failure, might die from hunger while finding iron ore.

Review: Find food before searching for iron ore.

Plan: Mine , craft , mine , craft , craft , hunt , mine

Predict: Probable success!

Execution:

Store relevant information back into database to refer to later.

Figure 1. Overview of the MINDSTORES planning architecture. The left shows the iterative experiential learning pipeline leveraging the
experience database. Database-related methods are in orange, planning steps are in green, and Minecraft steps are in red. The right shows
an example applies this pipeline to an example task in Minecraft.

across scenarios.

Minecraft exemplifies these challenges: agents must explore
procedural terrains, infer task dependencies (e.g., stone tools
before iron mining), and adapt to unforeseen challenges.
Current LLM planners, namely zero-shot architectures like
DEPS (Wang et al., 2024c), exhibit critical flaws: (1) they
lack persistent mental models, causing repetitive errors (e.g.,
using wooden pickaxes for iron mining); and (2) they under-
utilize LLMs’ reasoning to synthesize experiential insights,
producing brittle plans.

Related approaches like Voyager (Wang et al., 2023) also
fall short of experiential learning. Voyager builds a skill
database for low-level control, while DEPS uses a struc-
tured four-step planning process (Describe, Explain, Plan,
Select). However, these methods do not truly learn: they
store successful plans or skills and use primitive composi-
tion (retrieval, recombination) for future tasks. DEPS cannot
analyze why plans succeed or fail, and Voyager’s skill li-
brary ignores causal dependencies. Both treat experience as
static data, limiting generalization and adaptation.

To address these limitations, we propose MINDSTORES,
a framework that leverages LLMs to construct dynamic
mental models—internal representations guiding reasoning
and decision-making, inspired by human cognition. Just
as humans build simplified models of reality to anticipate
events and solve problems, our approach equips agents to
actively interpret experiences through structured reasoning.
By analyzing failures (e.g., “Wooden pickaxes break mining

iron”), inferring causal rules (e.g., “Stone tools are prerequi-
sites”), and predicting outcomes, the LLM transforms raw
interaction data into adaptive principles.

MINDSTORES augments planners with an experience
database storing natural language tuples (state, task, plan,
outcome) and operates cyclically: observe, retrieve relevant
experiences, synthesize context-aware plans, act, and log
outcomes. This closed-loop process enables semantic analy-
sis of memories, iterative strategy refinement, and outcome
prediction, bridging the gap between static planning and
experiential learning while grounding agent reasoning in
human-like cognitive foundations.

Hence, our key contributions are as follows:

• A cognitive-inspired formulation of artificial mental
models to enable natural-language memory accumula-
tion and transfer learning,

• MINDSTORES, a novel open-world LLM planner
leveraging the above formulation to develop lifelong
learning embodied agents, and

• Extensive evaluation of MINDSTORES in Minecraft,
demonstrating a 9.4% mean improvement in open-
world planning tasks over existing methods.

In the remainder of this paper, we detail the theoretical
foundations of mental models in Section 2, present the
MINDSTORES architecture in Section 3, and validate its

2



MINDSTORES

performance through experiments in Sections 4 and 5. Our
findings underscore the critical role of memory-informed
reasoning in developing lifelong learning agents for open-
world environments.

2. Background
2.1. Open-World Planning for Embodied Agents

Planning for embodied agents in open-world environments
presents unique challenges due to the unbounded action
space, long-horizon dependencies, and complex environ-
mental dynamics. In environments like Minecraft, agents
must reason about sequences of actions that may span
dozens of steps, where early mistakes can render entire
trajectories infeasible (Fan et al., 2022). Traditional plan-
ning approaches that rely on explicit state representations
and value functions struggle in such domains due to the com-
binatorial explosion of possible states and actions. The key
challenges in open-world planning stem from two main fac-
tors. First, the need for accurate multi-step reasoning due to
long-term dependencies between actions presents a signifi-
cant hurdle. Second, the requirement to consider the agent’s
current state and capabilities when ordering parallel sub-
goals within a plan poses additional complexity. Consider
the example of crafting a diamond pickaxe in Minecraft: the
process requires first obtaining wood, then crafting planks
and sticks, mining stone with a wooden pickaxe, crafting
a stone pickaxe, mining iron ore, smelting iron ingots, and
finally crafting the iron pickaxe – a sequence that can eas-
ily fail if any intermediate step is incorrectly executed or
ordered.

2.2. Zero-Shot LLM Planning with DEPS

Recent work has shown that large language models can serve
as effective zero-shot planners for embodied agents through
their ability to decompose high-level tasks into sequences
of executable actions (Huang et al., 2022a). The DEPS
(Describe, Explain, Plan and Select) framework leverages
this capability through an iterative planning process that
combines several key components (Wang et al., 2024c). The
framework utilizes a descriptor that summarizes the current
state and execution outcomes, an explainer that analyzes
plan failures and suggests corrections, a planner that gener-
ates and refines action sequences, and a selector that ranks
parallel candidate sub-goals based on estimated completion
steps. The key innovation of DEPS is its ability to improve
plans through verbal feedback and explanation. When a
plan fails, the descriptor summarizes the failure state, the
explainer analyzes what went wrong, and the planner incor-
porates this feedback to generate an improved plan. This
creates a form of zero-shot learning through natural lan-
guage interaction. However, DEPS and similar approaches
maintain no persistent memory across episodes. Each new

planning attempt starts fresh, unable to leverage insights
gained from previous successes and failures in similar sit-
uations. This limitation motivates our work on experience-
augmented planning.

2.3. Mental Models

Mental models are cognitive representations of how systems
and environments work, enabling humans to understand,
predict, and interact with the world around them. Originally
proposed by Craik (1952), mental models theory suggests
that people construct small-scale internal models of reality
that they use to reason, anticipate events, and guide behavior.
These models are built through experience and observation,
continuously updated as new information becomes available,
and help reduce cognitive load by providing ready-made
frameworks for understanding novel situations. A key in-
sight from psychological research on mental models is their
role in transfer learning and generalization (Canini et al.).
When faced with new scenarios, humans naturally draw
upon their existing mental models to make informed deci-
sions, even in previously unseen contexts. This ability to
leverage past experiences through abstract representations is
particularly relevant for embodied agents operating in open-
world environments, where they must constantly adapt to
novel situations while maintaining coherent, generalizable
knowledge about environmental dynamics.

3. Methods
3.1. Overview

We propose an experience-augmented planning framework
that maintains a similar foundation to DEPS but advances
by maintaining a persistent mental model of the environ-
ment through natural language experiences. Our approach
integrates several key components into a cohesive system.
The framework maintains a database D of experience tu-
ples (s, t, p, o) containing state descriptions s, tasks t, plans
p, and outcomes o. This is complemented by a semantic
retrieval system for finding relevant past experiences, an
LLM planner that generates insights and plans informed
by retrieved experiences, and a prediction mechanism that
estimates plan outcomes before execution.

3.2. Experience Database

Each experience tuple (s, t, p, o) ∈ D consists of natural
language paragraphs describing the environmental context.
The state s captures the environmental context and agent’s
condition. The task t represents the high-level goal to be
achieved. The plan p contains the sequence of actions gen-
erated by the planner. Finally, the outcome o describes the
execution result and failure description if applicable.

3



MINDSTORES

Task Instruction:
Craft Iron Boots in Minecraft survival mode

Initial Plan P0:

×3 → ×1 → ×6 → ×1 → ×1
Experience Database:

Failed: Mine iron with wooden pick.

Updated Plan Pt:
Wood ×3 → Wood Pick ×1 →
Stone ×3 → Stone Pick ×1 →
Iron Ore ×6 → Furnace ×1 →
Iron Ingot ×6 → Iron Boots ×1

Current State st:

Stone pickaxe can mine iron

Next Action at:
Mine last iron ore

Description dt:
I succeeded in mining iron w/ stone pick.

Now I can mine iron ore successfully.
Next step: Create a furnace to smelt iron.

Initial Task

Check Experience

Update Plan
Execute

Plan Next Describe

Update Experience

Figure 2. Interactive planning process for crafting iron boots in Minecraft. The system initially plans to mine iron with a wooden pickaxe
but learns from past experience that this will fail. It then updates the plan to include creating a stone pickaxe first, leading to successful
iron ore mining.

For each component, we compute a dense vector embedding
e(x) ∈ Rd using a pretrained sentence transformer, where x
represents any of s, t, p, or o. This allows efficient similarity-
based retrieval using cosine distance:

sim(x1, x2) =
e(x1) · e(x2)

∥e(x1)∥∥e(x2)∥
(1)

3.3. Experience-Guided Planning

Given a new state st and task tt, our algorithm proceeds
through several stages. Initially, it retrieves the k most
similar past experiences based on state and task similarity:

Nk(D, st, tt) = top-k(s,t,p,o)∈D[
∑

x∈{s,t}

λxsim(x, xt)]

(2)

The LLM is then prompted to analyze these experiences
and generate insights about common failure modes to avoid,
successful strategies to adapt, and environmental dynamics
to consider. Following this analysis, it generates an initial
plan pt conditioned on the state, task, experiences, and
insights.

The system then predicts the likely outcome by retrieving
similar past plans:

Nk(st, tt, pt) = top-k(s,t,p,o)∈D[
∑

x∈{s,t,p}

λxsim(x, xt)]

(3)

If predicted outcomes suggest likely failure, the system re-
turns to the plan generation stage to revise the plan. Finally,
it executes the plan and stores the new experience tuple in
D. The complete process is formalized in Algorithm 1.

3.4. Design Justification

Our approach incorporates several carefully considered de-
sign elements that work together to create an effective plan-
ning system. The use of natural language experiences,
rather than vectors or symbolic representations, leverages
the LLM’s ability to perform flexible reasoning over arbi-
trary descriptions. The semantic retrieval system employs
dense embeddings to enable efficient similarity search while
capturing semantic relationships between experiences be-
yond exact matches. The two-stage retrieval process first
retrieves experiences based on state/task similarity to in-
form plan generation, then retrieves similar plans to predict
outcomes, allowing the planner to both learn from past
experiences and validate new plans. Finally, the iterative
refinement capability enables the planner to revise plans
based on predicted outcomes before execution, reducing the

4



MINDSTORES

Algorithm 1 Experience-Augmented Planning
Require: State st, Task tt, Database D, LLM M , k neigh-

bors
Ensure: Plan pt

1: Nk ← retrieve top k(D, st, tt, k)
2: insights←M.analyze experiences(Nk)
3: pt ←M.generate plan(st, tt,Nk,insights)
4: while true do
5: similar plans←
6: get similar plans(D, st, tt, pt)
7: pred outcome←
8: analyze outcomes(similar plans)
9: if pred outcome is success then

10: break
11: end if
12: pt ←M.revise plan(pt, pred outcome)
13: end while
14: outcome← execute plan(pt)
15: D.add((st, tt, pt, outcome))
16: return pt

cost of actual failures. This design maintains the benefits of
zero-shot LLM planning while enabling continual learning
through natural experience.

4. Experiments
4.1. Experimental Setup

We evaluate our experience-augmented planning approach
in MineDojo using 8 tiers of task complexity complexity
(MT1-MT8) (Fan et al., 2022). The observation space in-
cludes RGB view, GPS coordinates, and inventory state,
with 42 discrete actions mapped from MineDojo’s action
space (Fan et al., 2022). All experiments utilize the behavior
cloning controller trained on human demonstrations, follow-
ing similar methodology to DEPS and Voyager. Due to
software version constraints, our implementation of the con-
troller achieves lower baseline performance than the original
DEPS controller. Therefore, we use our implementation of
DEPS without the experience database as the primary base-
line for fair comparison. Each task is evaluated over 30
trials with randomized initial states and a fixed random seed
of 42.

Our experience database uses Sentence-BERT embeddings
(768-dim) stored in FAISS for efficient search. Key parame-
ters were determined through ablation studies:

• Optimal k = 5 neighbors (tested k = 1, 3, 5, 10, 20)

• Weighted similarity: λs = 0.4 (state), λt = 0.4 (task),
λp = 0.2 (plan)

4.2. Evaluation Tasks

We evaluate on 53 Minecraft tasks grouped into 3 complex-
ity tiers:

• Basic (MT1-MT2): Fundamental tasks (wood/stone
tools, basic blocks)

• Intermediate (MT3-MT5): Progressive Tasks (food,
mining, armor crafting)

• Advanced (MT6-MT8): Complex tasks (iron tools,
minecart, diamond)

Episode lengths range from 3,000 steps (Basic) to 12,000
steps (Challenge tasks).

4.3. Baselines

• DEPS: State-of-the-art zero-shot LLM planner (Wang
et al., 2024c)

• Voyager: Automated curriculum learning agent (Wang
et al., 2023)

• Reflexion: LLM planner with environmental feedback
(Shinn et al., 2023)

4.4. Ablations

• No Experience: Remove retrieval component

• Fixed k Values: Test k = 1, 3, 5, 10, 20 retrieval con-
texts

• Single-Shot: Disable iterative plan refinement (DEPS)

4.5. Metrics

We measure:

• Success Rate: Completion percentage across trials

• Learning Efficiency: Iterations required for skill mas-
tery

• Complexity Scaling: Performance vs task complexity
tiers

• Retrieval Impact: Success rate vs context size (k)

• Continuous Learning: Effect of non-discrete experi-
ence database for each task progression

5. Results and Analysis
Our experiments reveal significant performance differences
between MINDSTORES and DEPS across task categories,
highlighting key insights into their scalability and effective-
ness.

5



MINDSTORES

5.1. Performance Metrics

MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8
0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

MINDSTORES
DEPS

Figure 3. Performance comparison: MINDSTORES consistently
outperforms DEPS across tasks. Both systems show declining
success rates with increasing complexity (MT1–MT8), with MT8
resulting in 0% success for both. Mean difference: 9.4%.

As we analyze Figure 3 in comparison to our version of
DEPS, we see all-around improvement with the experience
database addition.

Fundamental Tasks (MT1–MT2)

Both systems achieve strong performance in fundamental
crafting tasks, with DEPS achieving success rates of 70.6–
77.0% and MINDSTORES performing slightly better at
83.3–83.7%. Notably, there is near-parity in Wooden Axe
crafting, with both systems achieving a 96.7% success rate.
However, the largest performance gap in MT1 occurs in
Stick production, where MINDSTORES outperforms DEPS
by 6.3%. In MT2, MINDSTORES maintains a consistent
advantage, with an average performance improvement of
6.7% across tasks.

Intermediate Tasks (MT3–MT5)

The maximum disparity between the two systems occurs in
MT3 painting, where MINDSTORES achieves a 96.7% suc-
cess rate compared to DEPS’s 76.7%, resulting in a 20.0%
performance gap. In cooked meat tasks, MINDSTORES
maintains a 6.7–16.7% advantage over DEPS. For MT5
armor challenges, the performance gaps are particularly pro-
nounced, with Leather Helmet showing a 20.0% difference
and Iron Boots a 10.3% difference. Overall, MINDSTORES
maintains an average advantage of +11.0% across interme-
diate tasks, demonstrating significant divergence in system
performance.

Advanced Tasks (MT6–MT8)

In MT6 iron tool crafting, MINDSTORES achieves an aver-
age performance improvement of 12.2% over DEPS, with

the Iron Axe task showing a particularly large gap (23.3%
vs. 6.7%). MT7 highlights another standout difference, with
Tripwire Hook success rates at 43.3% for MINDSTORES
compared to 20.0% for DEPS. However, both systems ex-
perience a performance collapse in advanced tasks, with
MT6–MT7 success rates dropping below 21% (DEPS: 6.7–
8.3%, MINDSTORES: 17.3–20.5%). Notably, neither sys-
tem can solve the MT8 diamond crafting challenge, with
both achieving a 0% success rate.

5.2. Learning Efficiency Analysis

MINDSTORES demonstrates superior learning efficiency,
particularly for complex tasks. For basic tasks like mining
wood and cobblestone, all systems perform comparably (9 to
42 iterations) (Figure 4). However, as complexity increases,
MINDSTORES requires fewer iterations (54 to 276) com-
pared to Voyager and Reflexion, which show exponential
increases in required iterations.

M
ine

W
oo

d

M
ine

Cob
ble

sto
ne

M
ine

Coa
l

Furn
ac

e

M
ak

e Ston
e Sword

M
ine

Iro
n

0

200

400

N
ov

el
L

ea
rn

in
g

It
er

at
io

ns

MINDSTORES
Voyager
Reflexion

Figure 4. Performance comparison between MINDSTORES, Voy-
ager, and Reflexion across different Minecraft tasks. Values capped
at 500 iterations (shown for Reflexion in later tasks). MIND-
STORES demonstrates superior efficiency in complex tasks. (Note:
Novel Learning Iterations refer to the amount of unseen additions
to the experience database)

5.3. Scalability with Task Complexity

Performance divergence becomes pronounced with increas-
ing task complexity. MINDSTORES maintains efficient
novel learning iterations for tasks like crafting a stone sword
and mining iron, while Voyager and Reflexion require signif-
icantly more iterations, even reaching the max range (500+)
for a relatively simple Mine Iron task (Figure 4).

6



MINDSTORES

0 5 10 15 20
0

10

20

30

k Value

Su
cc

es
s

R
at

e
(%

)

Torch
Iron Boots

Iron Pickaxe
Minecart
Diamond

Figure 5. Success rates vs retrieval context size k for different tasks

5.4. Performance Scaling with k

Success rates improve significantly as k increases from 1 to
10 but show diminishing returns at k = 20. The impact of k
varies by task complexity (Figure 5): for simple tasks such
as Torch crafting, success rates show steady improvement
from 3.3% to 23.3% up to k = 10. Medium-complexity
tasks like Iron Boots exhibit more gradual improvement,
with success rates rising from 10% to 33.3%. For complex
tasks such as Iron Pickaxe and Minecart crafting, feasibility
is only achieved with larger k values, highlighting the de-
pendency on increased computational resources. However,
end-game tasks like Diamond crafting remain unachievable
regardless of the value of k, underscoring the inherent limi-
tations of the system in handling highly complex objectives.

These results align with our expected theorized improve-
ments from the Voyager and DEPS architectures, highlight-
ing the exponential impact of task complexity on completion
times in open-world environments. While basic operations
are handled reliably, managing complex, multi-step tasks
remains a challenge.

5.5. Continuous Experience Building Analysis

Within Figure 6, we present findings which shows an experi-
ment in which we do not reset the experience database after
each task is queried, but instead, we keep the experience
database building such that we see the effect of a “global”
experience database over a multitude of tasks. We observe
exceptional results, with the entire process of completing
the Minecart task taking only 9112 steps including the pre-
vious 9 tasks. This fully outperforms the allotted 6000 steps
needed to complete the task in a new environment, showing
that we only required 200 new steps. New task comple-

tion steps (Step differential between each following task)
decrease non-linearly even as complexity grows:

• Basic crafting (Wooden Door): 3000 steps

• Mid-tier crafting (Furnace): 4879 steps

• Advanced crafting (Iron Pickaxe): 8598 steps

The system maintains a 100% success rate across all tasks,
indicating robust skill transfer and knowledge utilization
from the growing experience database, which expands from
26 entries for wooden door to 355 entries for minecart (Fig-
ure 6 and Appendix Table 4).

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
·104

Task Reference Num.

To
ta

lS
te

ps

Completion Steps

Figure 6. Steps required for task completion with continuous build-
ing of experience database. See Appendix Table 4 for correspond-
ing tasks.

6. Related Works
6.1. Embodied Planning & Classical Methods

Early approaches used hierarchical reinforcement learning
(Sutton et al., 1999) and symbolic planning (Kaelbling &
Lozano-Perez, 2011) but struggled with scalability in open-
world domains like Minecraft. Hybrid methods like PDDL-
Stream (Garrett et al., 2020) combined symbolic planning
with procedural samplers, while DreamerV3 (Hafner et al.,
2024) employed latent world models. However, these meth-
ods depend on rigid priors, lack causal reasoning, and fail
to recover from irreversible errors. Reinforcement learning
frameworks (e.g., DQN (Mnih et al., 2015), PPO (Schulman
et al., 2017)) and LLM-RL hybrids like Eureka (Ma et al.,
2023) also falter in dynamic, long-horizon tasks due to static
reward mechanisms and error propagation.

6.2. Zero-Shot LLM Planners

DEPS (Wang et al., 2024c) pioneered zero-shot LLM plan-
ning through iterative verbal feedback, enabling dynamic

7



MINDSTORES

plan refinement. Subsequent works like Voyager (Wang
et al., 2023) (skill libraries), ProgPrompt (Singh et al., 2023)
(code generation), and Reflexion (Shinn et al., 2023) (feed-
back loops) advance LLM-based planning but share critical
flaws. Namely, they suffer from brittle execution due to
dependency on hardcoded assumptions (e.g., ProgPrompt’s
code templates), opaque memory due to non-interpretable
representations (e.g., Voyager’s code snippets, PaLM-E’s
latent vectors (Driess et al., 2023)), and the inability to learn
from failed task executions (e.g., Inner Monologue (Huang
et al., 2022b) lacks persistent memory).

6.3. Memory-Based Planners

Recent memory-augmented systems like E2CL (Wang et al.,
2024a), ExpeL (Zhao et al., 2024), and AdaPlanner (Sun
et al., 2023) store experiences but face key limitations.
Namely, they suffer from shallow reasoning capabilities
due to lack of environmental context (ExpeL) or causal anal-
ysis (ReAct (Yao et al., 2023)), especially of failure modes
(Voyager). Above all, these systems are often only evalu-
ated on narrow, controlled-environment benchmarks (e.g.,
ALFRED), not open-world tasks.

6.4. Mental Models in AI

While cognitive-inspired architectures like predictive coding
(Rao & Ballard, 1999) and world models (Ha & Schmid-
huber, 2018) encode environmental dynamics, they rely on
latent vectors (PIGLeT (Zellers et al., 2021)) or symbolic
logic (RAP (Hao et al., 2023)), sacrificing interpretabil-
ity and adaptability. Neuro-symbolic methods (Garcez &
Lamb, 2023) and tree-search frameworks (LATS (Zhou
et al., 2024)) further struggle with scalability and causal
reasoning.

7. Conclusion
In this paper we presented MINDSTORES, an experience-
augmented planning framework that enables embodied
agents to build and leverage mental models through nat-
ural interaction with their environment. Our approach ex-
tends zero-shot LLM planning by maintaining a database
of natural language experiences that inform future plan-
ning iterations. Through extensive experiments in Mine-
Dojo, MINDSTORES demonstrates significant improve-
ments over baseline approaches, particularly in intermediate-
complexity tasks, while maintaining the flexibility of zero-
shot approaches. The success of our “artificial mental model”
approach, which represents experiences as retrievable natu-
ral language tuples and enables LLMs to reason over past ex-
periences, demonstrates that incorporating principles from
human cognition can substantially improve complex reason-
ing and experiential learning capabilities in AI systems.

However, several limitations remain. Performance degrades
significantly for advanced tasks, and computational over-
head scales with database size. Future work should explore
more sophisticated experience pruning mechanisms, hierar-
chical memory architectures for managing larger experience
databases, and improved methods for transferring insights
across related tasks. Additionally, investigating ways to
combine our experience-based approach with traditional
reinforcement learning could help address the challenge of
long-horizon planning in complex environments.

Impact Statement
This work introduces a novel approach to autonomous
Minecraft gameplay by combining large language models
with dynamic experience storage. This system demonstrates
human-like problem-solving capabilities in complex and
safe open-world environments by breaking down high-level
goals into executable actions through natural language rea-
soning. The architecture’s ability to learn from past expe-
riences and adapt to new scenarios represents a significant
step toward more versatile and intelligent game-playing
agents. This research is broadly applicable beyond gaming
to other domains including real-world robotic tasks and au-
tonomous systems, where additional consideration of safety
developments would be needed to create physical systems.

References
Bhat, V., Kaypak, A. U., Krishnamurthy, P., Karri, R., and

Khorrami, F. Grounding llms for robot task planning
using closed-loop state feedback, 2024. URL https:
//arxiv.org/abs/2402.08546.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Lan-
guage Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https:
//papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Canini, K. R., Shashkov, M. M., and Griffiths, T. L. Model-
ing Transfer Learning in Human Categorization with the
Hierarchical Dirichlet Process.

Craik, K. J. W. The nature of explanation. Cambridge
: University Press, 1952. URL http://archive.
org/details/natureofexplanat0000crai.

8

https://arxiv.org/abs/2402.08546
https://arxiv.org/abs/2402.08546
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://archive.org/details/natureofexplanat0000crai
http://archive.org/details/natureofexplanat0000crai


MINDSTORES

Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowd-
hery, A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q.,
Yu, T., Huang, W., Chebotar, Y., Sermanet, P., Duck-
worth, D., Levine, S., Vanhoucke, V., Hausman, K.,
Toussaint, M., Greff, K., Zeng, A., Mordatch, I., and
Florence, P. PaLM-E: An Embodied Multimodal Lan-
guage Model, March 2023. URL http://arxiv.
org/abs/2303.03378. arXiv:2303.03378 [cs].

Dulac-Arnold, G., Levine, N., Mankowitz, D.,
et al. Challenges of real-world reinforcement
learning: definitions, benchmarks and analy-
sis. Machine Learning, 110:2419–2468, 2021.
doi: 10.1007/s10994-021-05961-4. URL https:
//doi.org/10.1007/s10994-021-05961-4.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu,
H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar, A.
MineDojo: Building Open-Ended Embodied Agents with
Internet-Scale Knowledge. Advances in Neural Informa-
tion Processing Systems, 35:18343–18362, December
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/hash/
74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_
and_Benchmarks.html.

Garcez, A. d. and Lamb, L. C. Neurosymbolic AI:
the 3rd wave. Artif. Intell. Rev., 56(11):12387–12406,
March 2023. ISSN 0269-2821. doi: 10.1007/
s10462-023-10448-w. URL https://doi.org/10.
1007/s10462-023-10448-w.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P.
PDDLStream: Integrating Symbolic Planners and Black-
box Samplers via Optimistic Adaptive Planning. Pro-
ceedings of the International Conference on Auto-
mated Planning and Scheduling, 30:440–448, June
2020. ISSN 2334-0843. doi: 10.1609/icaps.v30i1.
6739. URL https://ojs.aaai.org/index.
php/ICAPS/article/view/6739.

Ha, D. and Schmidhuber, J. World Models. March 2018.
doi: 10.5281/zenodo.1207631. URL http://arxiv.
org/abs/1803.10122. arXiv:1803.10122 [cs].

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Master-
ing diverse domains through world models, 2024. URL
https://arxiv.org/abs/2301.04104.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D.,
and Hu, Z. Reasoning with Language Model is Plan-
ning with World Model. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 8154–8173, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.

emnlp-main.507. URL https://aclanthology.
org/2023.emnlp-main.507/.

Huang, J. and Chang, K. C.-C. Towards Reasoning in Large
Language Models: A Survey. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 1049–1065,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
67. URL https://aclanthology.org/2023.
findings-acl.67/.

Huang, W., Abbeel, P., Pathak, D., and Mordatch,
I. Language Models as Zero-Shot Planners: Ex-
tracting Actionable Knowledge for Embodied Agents,
March 2022a. URL http://arxiv.org/abs/
2201.07207. arXiv:2201.07207 [cs].

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y.,
Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S.,
Hausman, K., and Ichter, B. Inner Monologue: Embod-
ied Reasoning through Planning with Language Models,
July 2022b. URL http://arxiv.org/abs/2207.
05608. arXiv:2207.05608 [cs].

Huang, Z., Tang, T., Chen, S., Lin, S., Jie, Z., Ma, L., Wang,
G., and Liang, X. Making Large Language Models Bet-
ter Planners with Reasoning-Decision Alignment, Au-
gust 2024. URL http://arxiv.org/abs/2408.
13890. arXiv:2408.13890 [cs].

Jeurissen, D., Perez-Liebana, D., Gow, J., Cakmak, D.,
and Kwan, J. Playing nethack with llms: Potential &
limitations as zero-shot agents, 2024. URL https://
arxiv.org/abs/2403.00690.

Kaelbling, L. P. and Lozano-Perez, T. Hierarchical task
and motion planning in the now. In 2011 IEEE In-
ternational Conference on Robotics and Automation,
pp. 1470–1477, Shanghai, China, May 2011. IEEE.
ISBN 978-1-61284-386-5. doi: 10.1109/ICRA.2011.
5980391. URL http://ieeexplore.ieee.org/
document/5980391/.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. ISSN 1476-4687. doi:
10.1038/nature14236. URL https://www.nature.
com/articles/nature14236. Publisher: Nature
Publishing Group.

9

http://arxiv.org/abs/2303.03378
http://arxiv.org/abs/2303.03378
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
https://arxiv.org/abs/2301.04104
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.findings-acl.67/
https://aclanthology.org/2023.findings-acl.67/
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2408.13890
http://arxiv.org/abs/2408.13890
https://arxiv.org/abs/2403.00690
https://arxiv.org/abs/2403.00690
http://ieeexplore.ieee.org/document/5980391/
http://ieeexplore.ieee.org/document/5980391/
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236


MINDSTORES

Plaat, A., Wong, A., Verberne, S., Broekens, J., Stein, N. v.,
and Back, T. Reasoning with Large Language Models, a
Survey, July 2024. URL http://arxiv.org/abs/
2407.11511. arXiv:2407.11511 [cs].

Rao, R. P. N. and Ballard, D. H. Predictive coding in
the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nature Neuro-
science, 2(1):79–87, January 1999. ISSN 1546-1726. doi:
10.1038/4580. URL https://www.nature.com/
articles/nn0199_79. Publisher: Nature Publish-
ing Group.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal Policy Optimization Algo-
rithms, August 2017. URL http://arxiv.org/
abs/1707.06347. arXiv:1707.06347 [cs].

Sel, B., Jia, R., and Jin, M. LLMs Can Plan Only If We
Tell Them, January 2025. URL http://arxiv.org/
abs/2501.13545. arXiv:2501.13545 [cs].

Shentu, Y., Wu, P., Rajeswaran, A., and Abbeel, P. From
llms to actions: Latent codes as bridges in hierarchi-
cal robot control, 2024. URL https://arxiv.org/
abs/2405.04798.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K.,
and Yao, S. Reflexion: language agents with verbal
reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 36:8634–8652, December
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.
html.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523–11530,
2023. doi: 10.1109/ICRA48891.2023.10161317.

Sun, H., Zhuang, Y., Kong, L., Dai, B., and Zhang, C.
AdaPlanner: Adaptive Planning from Feedback with
Language Models. Advances in Neural Information
Processing Systems, 36:58202–58245, December
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/hash/
b5c8c1c117618267944b2617add0a766-Abstract-Conference.
html.

Sutton, R. S., Precup, D., and Singh, S. Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112(1):181–211, August 1999. ISSN
0004-3702. doi: 10.1016/S0004-3702(99)00052-1.

URL https://www.sciencedirect.com/
science/article/pii/S0004370299000521.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C.,
Zhu, Y., Fan, L., and Anandkumar, A. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els, October 2023. URL http://arxiv.org/abs/
2305.16291. arXiv:2305.16291 [cs].

Wang, H., Leong, C. T., Wang, J., and Li, W.
Eˆ2CL: Exploration-based Error Correction Learn-
ing for Embodied Agents. In Al-Onaizan, Y.,
Bansal, M., and Chen, Y.-N. (eds.), Findings
of the Association for Computational Linguistics:
EMNLP 2024, pp. 7626–7639, Miami, Florida, USA,
November 2024a. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-emnlp.
448. URL https://aclanthology.org/2024.
findings-emnlp.448/.

Wang, J., Shi, E., Hu, H., Ma, C., Liu, Y., Wang, X., Yao,
Y., Liu, X., Ge, B., and Zhang, S. Large language models
for robotics: Opportunities, challenges, and perspectives.
Journal of Automation and Intelligence, 2024b. ISSN
2949-8554. doi: https://doi.org/10.1016/j.jai.2024.12.
003. URL https://www.sciencedirect.com/
science/article/pii/S2949855424000613.

Wang, Z., Cai, S., Chen, G., Liu, A., Ma, X., and Liang, Y.
Describe, Explain, Plan and Select: Interactive Planning
with Large Language Models Enables Open-World Multi-
Task Agents, July 2024c. URL http://arxiv.org/
abs/2302.01560. arXiv:2302.01560 [cs].

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. ReAct: Synergizing Reasoning and Act-
ing in Language Models, March 2023. URL http://
arxiv.org/abs/2210.03629. arXiv:2210.03629
[cs].

Zawalski, M., Chen, W., Pertsch, K., Mees, O., Finn, C., and
Levine, S. Robotic control via embodied chain-of-thought
reasoning, 2024. URL https://arxiv.org/abs/
2407.08693.

Zellers, R., Holtzman, A., Peters, M., Mottaghi, R., Kem-
bhavi, A., Farhadi, A., and Choi, Y. PIGLeT: Language
Grounding Through Neuro-Symbolic Interaction in a 3D
World. In Zong, C., Xia, F., Li, W., and Navigli, R.
(eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 2040–2050, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.159. URL https:
//aclanthology.org/2021.acl-long.159/.

10

http://arxiv.org/abs/2407.11511
http://arxiv.org/abs/2407.11511
https://www.nature.com/articles/nn0199_79
https://www.nature.com/articles/nn0199_79
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2501.13545
http://arxiv.org/abs/2501.13545
https://arxiv.org/abs/2405.04798
https://arxiv.org/abs/2405.04798
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291
https://aclanthology.org/2024.findings-emnlp.448/
https://aclanthology.org/2024.findings-emnlp.448/
https://www.sciencedirect.com/science/article/pii/S2949855424000613
https://www.sciencedirect.com/science/article/pii/S2949855424000613
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2407.08693
https://aclanthology.org/2021.acl-long.159/
https://aclanthology.org/2021.acl-long.159/


MINDSTORES

Zhao, A., Huang, D., Xu, Q., Lin, M., Liu, Y.-J.,
and Huang, G. ExpeL: LLM Agents Are Experien-
tial Learners. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(17):19632–19642, March
2024. ISSN 2374-3468. doi: 10.1609/aaai.v38i17.
29936. URL https://ojs.aaai.org/index.
php/AAAI/article/view/29936. Number: 17.

Zheng, W., Sharan, S. P., Fan, Z., Wang, K., Xi, Y., and
Wang, Z. Symbolic visual reinforcement learning: A scal-
able framework with object-level abstraction and differ-
entiable expression search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 47(1):400–412, 2025.
doi: 10.1109/TPAMI.2024.3469053.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language Agent Tree Search Unifies
Reasoning Acting and Planning in Language Models,
June 2024. URL http://arxiv.org/abs/2310.
04406. arXiv:2310.04406 [cs].

11

https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ojs.aaai.org/index.php/AAAI/article/view/29936
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406


MINDSTORES

A Method
A.1 Agent Algorithm

Pseudocode 1: Agent algorithm.

def run_agent(
environment, # MineDojo environment
max_steps=1000, # Maximum steps to run
goal_input="" # Optional high-level goal

):
# Initialize metrics and experience tracking
metrics_logger = MetricsLogger()
experience_store = ExperienceStore()

# Initial environment reset
obs, _, _, info = environment.step(environment.action_space.no_op())

step = 0
while step < max_steps:

# 1. Create structured state description
state_json = get_state_description(obs, info)

# 2. Get next immediate task
sub_task = get_next_immediate_task(state_json)
metrics_logger.start_subtask()

# 3. Plan action sequence
actions = plan_action(state_json, info["inventory"], sub_task)

# 4. Execute actions and track experience
obs, reward, done, info = execute_action_sequence(actions)

# 5. Store experience and update metrics
if done:

store_experience(state_json, reward, done)
break

step += len(actions)

environment.close()
metrics_logger.print_summary()

A.2 LLM Prompts

*A.2.1 Environment Description Prompt

You are an expert Minecraft observer. Describe the current environment state focusing on:

1. The agent’s immediate surroundings (blocks, entities, tools)
2. Environmental conditions (weather, light, temperature)
3. Agent’s physical state (health, food, equipment)
4. Notable resources or dangers

Current state:
${state_json_str}

12



MINDSTORES

Provide a clear, concise description that would be useful for planning actions.

*A.2.2 Situation Analysis Prompt

You are an expert Minecraft strategist. Given the current state and environment description:

1. Analyze available resources and their potential uses
2. Identify immediate opportunities or threats
3. Consider crafting possibilities based on inventory
4. Evaluate progress towards goals

Environment description:
${description}

Current state:
${state_json_str}

Provide strategic insights about the current situation.

*A.2.3 Strategy Planning Prompt

You are an expert Minecraft planner. Create a strategic plan considering:

1. The current goal: ${goal}
2. Available resources and tools
3. Environmental conditions
4. Potential obstacles or requirements
5. Do not assume intermediate tasks can be achieved without running another agent loop
6. Specify quantities and required actions

Environment description:
${description}

Situation analysis:
${explanation}

Current state:
${state_json_str}

Create a specific, actionable plan that moves towards the goal.

*A.2.4 Action Selection Prompt

You are an expert Minecraft action selector. Convert the plan into specific actions:

1. Use only valid Minecraft actions (move_forward, move_backward, jump, craft, etc.)
2. Consider the current state and available resources
3. Break down complex tasks into simple action sequences
4. Ensure actions are feasible given agent capabilities
5. Make actions incremental and build progressively

Available actions:
- forward [N]: Move forward N steps (default 1)
- backward [N]: Move backward N steps (default 1)

13



MINDSTORES

- move_left
- move_right
- jump
- sneak
- sprint
- attack [N]
- use
- drop
- craft
- equip [item]
- place [block]
- destroy
- look_horizontal +/-X
- no_op

Strategic plan:
${plan}

Current state:
${state_json_str}

Return ONLY a list of actions, one per line, that can be directly executed.

*A.2.5 Outcome Evaluation Prompt

Evaluate the outcome of a Minecraft action sequence in brief.

Initial state (JSON): ${initial_state}
Final state (JSON): ${final_state}
Reward: ${reward}
Done: ${done}
GPT Plan: ${gpt_plan}
Executed Actions: ${executed_actions}

Format response as: outcome|success|explanation

A.3 State Representation

The structured state representation includes:

Core Components:

• Inventory: Dictionary mapping items to quantities

• Equipment: Currently equipped armor/weapons/tools

• Nearby blocks: Block types within 32-block radius

• Position: 3D coordinates in world space

• Health/Hunger bars: Current status (max 20)

Environmental Information:

• Biome type and characteristics

• Time of day (sunrise, day, noon, sunset, night, midnight)

14



MINDSTORES

• Weather conditions

• Light levels

• Nearby entities with distances

Task Tracking:

• Completed tasks history

• Failed tasks log

• Current active subtask

• Task dependencies

A.4 Experience Store

The experience store maintains a database of past experiences with the following structure:

@dataclass
class ActionExperience:

state: str # Initial state description
task: str # Attempted task
plan: List[str] # Action sequence
outcome: str # Result description
success: bool # Task completion status
reward: float # Numerical reward
embedding: np.ndarray # State embedding vector

Key functionality includes:

• Semantic search using SBERT embeddings

• Experience retrieval based on state/task similarity

• Automatic logging of outcomes

• Database health monitoring

• Experience pruning based on relevance

A.5 Metrics Logger

The metrics logger tracks:

• Total subtasks attempted

• Successful subtasks completed

• Experience retrieval statistics

• Subtask completion times

• Database size over time

• Action success rates

• Resource collection efficiency

15



MINDSTORES

Example metrics output:

===== METRICS SUMMARY =====
Total subtasks: 47
Successful subtasks: 32
Success rate: 68.1%
Experience retrieval calls: 94
Total experiences retrieved: 283
Avg subtask completion time: 12.4s
Database size: 156 experiences
Action success rate: 73.2%
Resource efficiency: 82.5%
===========================

B Implementation Details
B.1 Core Components

Our implementation leverages:

• MineDojo environment for Minecraft interaction

• OpenAI GPT-4 API for planning and reasoning

• SBERT for semantic embeddings

• FAISS for efficient similarity search

• Custom logging system for experiment tracking

The codebase is structured into core modules:

• State representation and processing

• Experience management and retrieval

• Action planning and execution

• Metrics collection and analysis

• Environment interaction handlers

B.2 Environment Integration

Environment configuration:

env = minedojo.make(
task_id="survival",
image_size=(480, 768),
seed=40,
initial_inventory=[

InventoryItem(slot=0, name="wooden_axe", quantity=1),
]

)

Action space includes:

• Movement: forward, backward, left, right, jump, sneak, sprint

16



MINDSTORES

• Interaction: attack, use, drop, craft, equip, place, destroy

• Camera: look horizontal, look vertical

• Special: no op

B.3 Neural Components

Embedding configuration:

• Model: SBERT ’all-MiniLM-L6-v2’

• Output dimension: 384

• Normalization: L2

• Distance metric: Euclidean

FAISS index parameters:

• Index type: IndexFlatL2

• Dimension: 384

• Metric: L2 distance

C Appendix
C.1 Configuration Parameters

DEFAULT_CONFIG = {
"max_steps": 1000,
"max_recent_actions": 5,
"experience_retrieval_k": 5,
"embedding_dim": 384,
"max_retries": 4,
"action_timeout": 300,
"exploration_rate": 0.1

}

C.2 Logging Format

logging.basicConfig(
format=’%(asctime)s - %(name)s - %(levelname)s - %(message)s’,
level=logging.INFO,
handlers=[

logging.FileHandler("agent.log"),
logging.StreamHandler(sys.stdout)

]
)

C.3 Error Handling

Exception hierarchy:

class AgentError(Exception): pass
class PlanningError(AgentError): pass
class ExecutionError(AgentError): pass
class ExperienceError(AgentError): pass

17



MINDSTORES

Recovery strategies:

• Automatic retry with exponential backoff

• Fallback to simpler actions

• State restoration on critical failures

• Experience logging for failed attempts

Table 1. Task Details
Meta Name Number Example Steps Given Tool
MT1 Basic 14 Make a wooden door 3000 Axe
MT2 Tool 12 Make a stone pickaxe 3000 Axe
MT3 Hunt and Food 7 Cook the beef 6000 Axe
MT4 Dig-down 6 Mine Coal 6000 Axe
MT5 Equipment 9 Equip the leather helmet 3000 Axe
MT6 Tool (Complex) 7 Make shears and bucket 6000 Axe
MT7 IronStage 13 Obtain an iron 6000 Axe
MT8 Challenge 1 Obtain a diamond! 12000 Axe

18



MINDSTORES

Category Task Name MINDSTORES (%) DEPS (%)
MT1 Wooden Door 83.3 66.7
MT1 Stick 90.0 83.7
MT1 Wooden Slab 83.3 73.7
MT1 Planks 80.0 73.3
MT1 Fence 80.0 66.7
MT1 Sign 86.7 73.3
MT1 Trapdoor 80.0 56.7
MT2 Furance 70.0 56.67
MT2 Crafting Table 93.3 83.3
MT2 Wooden Axe 96.7 96.7
MT2 Wooden Sword 90.0 86.7
MT2 Wooden Hoe 86.7 86.7
MT2 Stone Pickaxe 76.7 73.3
MT2 Stone Sword 83.3 80.0
MT2 Stone Shovel 70.0 66.7
MT2 Wooden Shovel 86.7 63.3
MT3 Cooked Beef 60.0 43.3
MT3 Bed 50.0 43.3
MT3 Item Frame 86.7 83.3
MT3 Cooked beef 76.7 63.3
MT3 Cooked Mutton 73.3 66.7
MT3 Painting 96.7 76.67
MT3 Cooked Porkchop 53.3 43.3
MT4 Torch 13.3 3.3
MT4 Cobblestone wall 66.7 53.3
MT4 Lever 86.7 73.3
MT4 Coal 23.3 10.0
MT4 Stone Slab 70.0 53.33
MT4 Stone Stairs 73.3 63.33
MT5 Iron Boots 27.0 16.67
MT5 Iron Helmet 10.0 0.0
MT5 Shield 23.3 13.3
MT5 Iron Chestplate 10.0 0.0
MT5 Leather boots 63.3 60.0
MT5 Iron leggings 3.3 3.3
MT5 Leather Helmet 66.7 46.67
MT6 Iron pickaxe 6.67 0.0
MT6 Bucket 13.3 6.7
MT6 Iron Sword 23.3 6.7
MT6 Iron Hoe 23.3 13.3
MT6 Iron Axe 23.3 6.67
MT6 Shears 33.3 16.67
MT7 Minecart 13.3 0.0
MT7 Iron Nugget 36.7 20.0
MT7 Furance Minecart 6.7 3.3
MT7 Rail 13.3 6.7
MT7 Cauldron 10.0 3.3
MT7 Iron Bars 13.3 6.7
MT7 Iron Door 13.3 3.3
MT7 Tripwire Hook 43.3 20.0
MT7 Iron trap door 16.7 3.3
MT7 Hopper 6.7 0.0
MT8 Diamond 0.0 0.0

Table 2. Task Details with MINDSTORES and DEPS Percentages
19



MINDSTORES

k Torch Iron Boots Iron Pickaxe Minecart Diamond Context Description Avg Time
1 3.3 10 0 0 0 Minimal context 3 s
3 6.6 20 3.3 0 0 Slight overhead 15 s
5 13.3 27 6.67 3.3 0 Sweet spot 23 s

10 23.3 33.33 10 6.67 0 Overcrowded 57 s
20 23.3 33.3 13.3 6.67 0 Leveled off 110 s

Table 3. Retrieved Experiences for Different Values of k

Task Number Task Name Novel DB Size Success Steps
1 Wooden Door 26 Yes 3000
2 Wooden Shovel 56 Yes 4357
3 Furnace 81 Yes 4879
4 Cooked Beef 134 Yes 5602
5 Cooked Porkchop 141 Yes 5802
6 Torch 197 Yes 6458
7 Stone Slab 199 Yes 6578
8 Iron Pickaxe 289 Yes 8598
9 Iron Axe 300 Yes 8986

10 Minecart 355 Yes 9112

Table 4. Task Details with Database Size, Success, and Steps till Completion

Task MINDSTORES Voyager Reflexion
Mine Wood 10 12 9
Mine Cobblestone 34 42 39
Mine Coal 54 85 106
Make Furnace 89 147 198
Make Stone Sword 187 263 N/A (500+)
Mine Iron 276 N/A (500+) N/A (500+)

Table 5. Time steps required to complete different Minecraft tasks across three systems

Task MINDSTORES DEPS
(Predicted) (No Prediction)

MT1 83.3% 70.6%
MT2 83.7% 77.0%
MT3 71.0% 60.0%
MT4 55.6% 42.8%
MT5 29.1% 20.0%
MT6 20.5% 8.3%
MT7 17.3% 6.7%
MT8 0.0% 0.0%

Table 6. Success Rate Comparison With vs. Without Outcome Prediction (MINDSTORES vs. DEPS)

Note: Data corresponds to the performance comparison graph. MINDSTORES shows consistent improvements across all tasks (mean
+9.4%). Performance gap widens with complexity until MT8 (terminal failure for both).

20


