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Abstract

Large Language Models (LLMs) have demon-

strated remarkable reasoning capabilities through

chain-of-thought prompting, yet discovering ef-

fective reasoning methods for complex problems

remains challenging due to the vast space of

possible intermediate steps. We introduce Ant

Colony Optimization-guided Tree of Thought

(ACO-ToT), a novel algorithm that combines

ACO with LLMs to discover optimal reasoning

paths for complex problems efficiently. Draw-

ing inspiration from Hebbian learning in neuro-

logical systems, our method employs a collec-

tion of distinctly fine-tuned LLM “ants” to tra-

verse and lay pheromone trails through a central-

ized tree of thought, with each ant’s movement

governed by a weighted combination of existing

pheromone trails and its own specialized exper-

tise. The algorithm evaluates complete reason-

ing paths using a mixture-of-experts-based scor-

ing function, with pheromones reinforcing pro-

ductive reasoning paths across iterations. Ex-

periments on three challenging reasoning tasks

(GSM8K, ARC-Challenge, and MATH) demon-

strate that ACO-ToT performs significantly bet-

ter than existing chain-of-thought optimization

approaches, suggesting that incorporating biolog-

ically inspired collective search mechanisms into

LLM inference can substantially enhance reason-

ing capabilities.

1. Introduction

Large language models (LLMs) have demonstrated re-

markable capabilities in emulating human-like behavior

across diverse tasks (Brown et al., 2020). These mod-

els process sequences of tokens through attention mecha-

nisms, achieving strong performance on mathematical, log-

*Equal contribution 1a37.ai, San Francisco, CA, USA
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3Harvard University, Cambridge, MA, USA. Correspondence to:
Anirudh Chari <anichari@mit.edu>.

ical, and commonsense reasoning benchmarks (Wei et al.,

2023). However, their widespread adoption faces two crit-

ical limitations: computational efficiency and reasoning

accuracy (Chowdhery et al., 2022). Specifically, their rea-

soning capabilities remain constrained by token-level pro-

cessing within the attention architecture, necessitating en-

hanced reasoning mechanisms for applications requiring

exploration, strategic planning, or deterministic initial steps

(Yao et al., 2023).

Recent research has shifted from black-box approaches to-

ward interpretable methodologies grounded in cognitive

science principles (Ling et al., 2017). Chain-of-Thought

(CoT) prompting exemplifies this transition by explicitly

generating intermediate reasoning steps before producing

final outputs (Wei et al., 2023). This method implements

a verification mechanism where the model evaluates its

own reasoning, significantly improving accuracy on com-

plex tasks (Kojima et al., 2023). However, naive CoT ef-

fectively only considers a single approach to solving a prob-

lem. Meanwhile, humans may consider many possible ap-

proaches to a problem before deciding upon a productive

reasoning method (Newell & Simon, 1972), which points

toward the notion of CoT “optimization.”

To build upon CoT’s initial success and address this key

limitation, researchers have developed various specialized

frameworks for structured exploration of the reasoning

space. Notable derivatives include Tree-of-Thoughts (ToT)

(Yao et al., 2023), Graph-of-Thoughts (GoT) (Besta et al.,

2024), and Iterative Reasoning Preference Optimization

(IRPO) (Bai et al., 2022). These methodologies transcend

CoT’s linear progression by implementing branching, back-

tracking, and systematic space exploration, more accu-

rately reflecting human problem-solving strategies. How-

ever, as reasoning tasks grow in complexity, these methods

incur substantial computational overhead due to the expo-

nential growth in intermediate reasoning steps required for

accurate solutions (Yao et al., 2023).

Hebbian learning (Hebb, 1949) provides a paradigm for un-

derstanding pathway optimization in biological neural net-

works. The principle, commonly expressed as “neurons

that fire together, wire together,” describes how repeated ac-

tivation of sequences of neurons strengthens synaptic con-

nections between those neurons, establishing preferential
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Figure 1. Comparison of approaches to complex reasoning problems with LLMs. Each rectangular node represents a thought—an inter-

mediate reasoning step to solve a larger problem. On the right, our method utilizes “ants” traversing between connected reasoning steps

(depicted as circles) to strengthen productive reasoning steps across iterations via pheromone trails. See algorithmic implementation for

1c in Figure 2.

pathways for efficient signal propagation (Löwel & Singer,

1992).

We propose adapting this neurological optimization prin-

ciple to LLM reasoning through Ant Colony Optimiza-

tion (ACO), which we claim sufficiently resembles Heb-

bian learning mechanics. Our implementation, ACO-ToT,

employs specialized fine-tuned LLMs as artificial ants

traversing a reasoning space. These LLM-ants deposit vir-

tual pheromones proportional to reasoning quality. The

system implements a probabilistic path selection mech-

anism, where pheromone concentration influences path

choice while maintaining exploration-exploitation balance

through stochastic selection. This collective intelligence

approach gradually converges on optimal reasoning strate-

gies while pruning inefficient paths (Blum, 2005).

Hence, our main contributions are:

• A neuroscience-inspired paradigm for search and opti-

mization across the natural-language reasoning space

via pheromone mechanics,

• ACO-ToT, a mixture-of-experts algorithm applying

the above paradigm for dynamic CoT optimization us-

ing artificial LLM-based ants, and

• Extensive experimental validation of ACO-ToT

demonstrating a mean absolute accuracy improvement

of 16.6% over existing approaches.

Section 2 contextualizes the integration of Hebbian learn-

ing principles with Tree of Thoughts prompting. Sections

3 and 4 detail our implementation methodology and ana-

lyze theoretical properties, including computational com-

plexity. Section 5 presents our experimental protocol using

the GSM8K, ARC-Challenge, and MATH datasets, while

Section 6 provides comprehensive results and analysis for

comparison with other flagship methods and ablation stud-

ies for accuracy optimization. Section 7 describes related

works in CoT prompting, LLM inference optimization, bio-

logical inspiration in AI, mixture of experts, and prompting

techniques for increasing reasoning. Finally, Section 8 con-

cludes our paper with a summary of findings and suggests

future directions.

2. Background

2.1. Chain of Thought

Chain-of-thought (CoT) prompting enables language mod-

els to break down complex reasoning tasks into interme-

diate steps, significantly improving their problem-solving

capabilities (Wei et al., 2023). Given an input x and de-

sired output y, CoT introduces a sequence of interme-

diate thoughts z1, ..., zn that bridge the reasoning gap.

Each thought zi represents a coherent language sequence

sampled from the distribution zi ∼ πθ(zi|x, z1, ..., zi−1),
where πθ denotes the language model with parameters θ.

The key innovation of CoT lies in its ability to decompose

multi-step problems into manageable intermediate steps, al-

lowing models to allocate computational resources accord-

ing to problem complexity. This decomposition provides

interpretable insights into the model’s reasoning process

and enables debugging of incorrect solutions. Empirically,

CoT prompting has demonstrated significant improvements

across arithmetic, commonsense, and symbolic reasoning

tasks (Huang et al., 2022).
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2.2. Tree of Thought

Tree of Thought (ToT) extends CoT by enabling ex-

ploration of multiple reasoning paths simultaneously

(Yao et al., 2023). Rather than generating a single chain,

ToT maintains a tree where each node represents a state

s = [x, z1:i] containing the input and sequence of thoughts

thus far. At each state, ToT generates k candidate next

thoughts and evaluates their promise toward solving the

problem. The ToT framework comprises four key compo-

nents: (1) thought decomposition into appropriate semantic

units, (2) thought generation through sampling or sequen-

tial proposal, (3) state evaluation via independent scoring

or comparative voting, and (4) tree search algorithms like

breadth-first or depth-first search to explore the reasoning

space. This deliberate exploration allows ToT to overcome

limitations of left-to-right decoding by considering multi-

ple paths and backtracking when necessary.

2.3. Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic

inspired by the foraging behavior of ant colonies

(Dorigo & Di Caro, 1999). In ACO, artificial ants tra-

verse a graph representing possible solutions, depositing

pheromone trails proportional to solution quality. The prob-

ability pij of an ant choosing edge (i, j) is given by:

pij =
(τij)

α(ηij)
β

∑
l∈Ni

(τil)α(ηil)β
(1)

where τij is the pheromone level, ηij is a heuristic value, α
and β are parameters controlling their relative importance,

and Ni is the set of available next nodes. After each itera-

tion, pheromone levels are updated according to:

τij ← (1 − ρ)τij +
m∑

k=1

∆τkij (2)

where ρ is the evaporation rate and ∆τkij is the pheromone

deposited by ant k. The pheromone reinforcement mech-

anism in ACO resembles Hebbian learning in biological

neural networks, where repeatedly activated synaptic path-

ways become stronger over time (Ye et al., 2023). This par-

allel suggests that pheromone-based path selection could

naturally extend to reasoning-space search in a ToT, where

promising cognitive trajectories are strengthened through

repeated traversal while unproductive paths decay through

evaporation. Figure 1 visually highlights the main differ-

ences between CoT, ToT, and ACO-ToT during reasoning-

space exploration.

2.4. Mixture of Experts

Mixture of Experts (MoE) for LLMs leverages multiple

specialized models to collaboratively work on complex

tasks. In the context of LLMs, MoE architectures con-

sist of a set of “expert” models, each fine-tuned for spe-

cific reasoning types or domains, and a routing mechanism

that determines how to weigh expert outputs for a given in-

put (Si et al., 2023). The advantages of incorporating MoE

in LLM reasoning motivate us to consider LLMs as “ants”

during reasoning-space exploration (Yao et al., 2023).

3. Methods

3.1. Algorithm Overview

We propose ACO-guided Tree of Thought (ACO-ToT), a

novel algorithm that combines the exploration capabilities

of ToT with the collective intelligence of ACO to discover

optimal reasoning paths. The algorithm employs a col-

lection of specialized LLM “ants” to traverse a reasoning

graph generated by a central LLM, converging on high-

quality CoTs through iterative exploration and reinforce-

ment. For a general overview of the algorithm, see Figure

2.

3.2. Reasoning Graph Construction

Given a problem input x, we first prompt a central LLM πc

to generate a tree of thought T . We augment T with spe-

cial start node s0 and end node sf to form a directed graph

G = (V,E), where vertices V represent reasoning states

and edges E represent transitions between states. Each

state si ∈ V contains the problem input and accumulated

reasoning chain: si = [x, z1:i]. Psuedocode for ToT gener-

ation is found as Algorithm 2.

3.3. LLM Ant Colony

Motivated by MoE architectures, we maintain a collection

of m distinctly fine-tuned LLMs {π1, ..., πm} that serve as

specialized “ants”. Each LLM πk is fine-tuned on differ-

ent aspects of reasoning, providing diverse expertise. At

each timestep t, ant k at state i chooses its next state j with

probability:

pkij =
(τij)

α(hk
ij)

β

∑
l∈Ni

(τil)α(hk
il)

β
(3)

where τij is the pheromone level on edge (i, j), hk
ij is the

heuristic value computed by prompting LLM πk for its as-

sessment of state j, and Ni is the set of available next states.

3.4. Path Evaluation and Pheromone Update

For a complete path P = (s0, ..., sf ), i.e., a chain of

thought, we compute its quality Q(P ) as:

3
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Complex Problem

“Julie is reading a 120-page book.

Yesterday, she was able to read 12

pages and today, she read twice as

many pages as...“

Central LLMTree

Generation

Tree of Thought

120 - 12 = 108

108/2 = 54

108 - 24 = 84

...

LLM Ant Colony

A1 A2 A3

Optimal Chain

120 - 12 = 108

108 - 24 = 84

84 / 2 = 42

Solution:

42 Pages

Figure 2. Example procedure for a math problem from GSM8K.

The central LLM is prompted for an initial ToT, which is next

explored by fine-tuned ant LLMs to discover an optimal reasoning

path, and then computed for a final result. See Algorithm 1 for

general procedure.

Q(P ) = w1C(P ) + w2L(P ) + w3M(P ) (4)

where:

• C(P ) is the semantic coherence measured via embed-

ding cosine similarity between consecutive states

• L(P ) is a length penalty term: − log(|P |)

• M(P ) is a mixture-of-experts score: 1

m

∑m
k=1

πk(P )

• w1, w2, w3 are weights

This quality function roughly captures the logic, complex-

ity, and agreeability of a given reasoning path.

Pheromone levels are updated according to:

τij ← (1 − ρ)τij +

m∑

k=1

∆τkij

where ∆τkij = Q(Pk) if edge (i, j) is in ant k’s path Pk ,

and 0 otherwise. Across iterations, these updates yield fur-

ther exploitation of high-quality reasoning strategies.

3.5. Convergence and Path Extraction

The algorithm iterates until either reaching a maximum it-

eration count T or satisfying a convergence criterion based

Algorithm 1 ACO-guided Tree of Thought

Require: Problem x, central LLM πc, ant LLMs

{π1, . . . , πm}, iterations T
Ensure: Optimal chain of thought z∗

1: Initialize reasoning graph:

2: G = (V,E)← GenerateToT(πc, x)
3: τij ← τ0 for all (i, j) ∈ E
4: Main ACO loop:

5: for t = 1 to T do

6: Initialize ant paths:

7: Pk ← [s0] for k = 1, . . . ,m
8: Construct solutions:

9: while ∃k : sf /∈ Pk do

10: for all ant k with incomplete path do

11: i← last state in Pk

12: j ← SampleNextState(πk, τ, h) {Using Eq. 3}
13: Pk ← Pk ∪ {j}
14: end for

15: end while

16: Evaluate paths and update pheromones:

17: for all edge (i, j) ∈ E do

18: τij ← (1− ρ)τij
19: for k = 1 to m do

20: if (i, j) ∈ Pk then

21: τij ← τij +Q(Pk) {Using Eq. 4}
22: end if

23: end for

24: end for

25: end for

26: return ExtractBestPath(G, τ)

on path diversity across iterations. The final optimal chain

of thought z∗ is extracted from the path with highest

pheromone levels in the graph. This path can then be used

by the central LLM πc to generate the final solution.

4. Theoretical Properties

4.1. Classical Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired

by ant foraging behavior, widely applied to combinatorial

optimization problems. Here we analyze its key theoreti-

cal properties informing our application to reasoning-space

application.

Convergence ACO converges to optimal solutions under

specific conditions. In general, with pheromone update

rules and evaporation rates appropriately chosen accord-

ing to the given problem, the algorithm asymptotically ap-

proaches the global optimum while avoiding local optima.

Formally, this convergence can be expressed as:
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lim
i→∞

P (z∗, i, k) = 1 (5)

where P represents the probability of ant k finding op-

timal path z∗ on iteration i > i∗, with i∗ being the

iteration where the first optimal solution is discovered

(Dorigo & Stützle, 2004). In practice, convergence can be

induced by allowing a max-iteration time instead of waiting

for a completely stable state, as ACO-ToT implements here.

Techniques like elitism, which prioritize top solutions in

pheromone updates, can accelerate this convergence. See

Dorigo & Stützle (2004) for more rigorous analysis.

Exploration vs. Exploitation The balance between explo-

ration and exploitation in ACO is governed by pheromone

dynamics. The parameters α and β control this balance,

with α weighting the influence of pheromone trails (ex-

ploitation) and β weighting heuristic information (explo-

ration). The evaporation rate further modulates this bal-

ance: higher rates promote exploration while lower rates

reinforce exploitation. This mechanism is particularly cru-

cial in complex solution spaces with multiple local optima.

For more rigorous analysis, see (Dorigo et al., 2006).

Computational Complexity ACO exhibits polynomial

complexity in both the number of ants and problem size.

For instance, in the traveling salesman problem, solution

construction per ant scales as O(n2) for n cities, with

pheromone updates requiring equivalent complexity, work-

ing out a weighted optimal path, which can found to be

similar to finding an optimal path through reasoning con-

sidering MoE weights. While efficient for moderate-sized

problems, the algorithm’s iterative nature can become com-

putationally intensive for large instances, though notably,

this can be significantly mitigated through parallelization.

4.2. ACO-ToT Analysis

The integration of ACO with Tree of Thoughts introduces

unique computational considerations that must be carefully

balanced against performance gains.

API Costs The primary cost metric in LLM-based imple-

mentations is API call volume. For ACO-ToT, each ant

requires N intermediate thoughts per explored path over t
iterations, resulting in A · N · t total LLM calls for A ants.

This compounds with the base ToT overhead of
∑d

i=1
ni

calls for tree generation, where d is tree depth and n is the

branching factor.

Computational Overhead Parallel LLM execution intro-

duces significant resource demands compared to standard

ToT. Each ant requires dedicated GPU memory for model

loading, while concurrent inference can strain computa-

tional resources. To manage these costs, we implement:

1. A maximum iteration count T to force early conver-

gence

2. Efficient parallelization through batched LLM calls

3. Multi-GPU distribution for memory optimization

These constraints align well with typical ToT implementa-

tions, where reasoning paths can be bounded around the

optimal 5-6 steps (Yao et al., 2023), enabling ACO-ToT to

operate efficiently within the smaller ToT. We further study

the practical capabilities within ablation trials found in fu-

ture sections.

5. Experiments

We wish to empirically prove that an implementation of

ACO-ToT challenges standard and flagship models of rea-

soning in LLMs, through testing on multiple databases.

The following section details information about the setup

used, datasets and baselines tested against, and additional

metrics stored for ablation studies in the Results section.

5.1. Experimental Setup

For all experiments, we use Llama-70b as our base lan-

guage model, with five distinctly fine-tuned LLM experts

serving as ants:

• Mathematical reasoning expert (fine-tuned on

ProofNet)

• Scientific reasoning expert (fine-tuned on ScienceQA)

• Logical deduction expert (fine-tuned on LogiQA)

• Common sense reasoning expert (fine-tuned on

CSQA)

• Domain-specific expert (fine-tuned on task-specific

data)

Implementation details:

• Number of LLM ants m = 5

• Pheromone evaporation rate ρ = 0.1

• Exploitation vs exploration weights α = 1, β = 2

• Path quality weights w1 = 0.4 (coherence), w2 = 0.3
(length), w3 = 0.3 (expert consensus)

• Maximum iterations T = 10 or until convergence

• Convergence threshold: path stability for 3 consecu-

tive iterations

All experiments were run using 8 NVIDIA A100 GPUs

with 80GB memory.
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5.2. Datasets

GSM8K Grade school math word problems containing

7.5K training and 1K test examples. Each problem re-

quires multi-step reasoning to arrive at a numerical answer

(Cobbe et al., 2021). We use the standard train/test split

and evaluate using exact match accuracy.

ARC-Challenge Science questions consisting of 2,590

training and 1,172 test examples (Clark et al., 2018). Each

question is multiple choice with 4 options. We evaluate

using accuracy on the challenge set.

MATH Competition math problems across different cat-

egories, with 7,500 training and 5,000 test problems

(Hendrycks et al., 2021). Problems require advanced math-

ematical reasoning and formal notation.

5.3. Baselines

We compare ACO-ToT against three strong baselines rep-

resenting different approaches to LLM reasoning:

Chain of Thought (CoT), as introduced previously, gen-

erates intermediate reasoning steps sequentially to bridge

input and output. We use the standard CoT prompting ap-

proach with Llama-70b as described in Wei et al. (2023).

Tree of Thought (ToT), as introduced previously, explores

multiple reasoning paths by maintaining a tree of intermedi-

ate thoughts. We implement the BFS variant of ToT using

the same thought decomposition and evaluation strategies

as described in Yao et al. (2023).

Iterative Reasoning Preference Optimization (IRPO)

represents the current state-of-the-art learning-based ap-

proach. IRPO iteratively optimizes preference between

competing CoT candidates by training on winning vs. los-

ing reasoning steps using a modified DPO loss with an ad-

ditional negative log-likelihood term. While other learning-

based methods require extensive training procedures, IRPO

achieves strong performance through efficient preference

optimization over multiple iterations. We use the authors’

implementation with their reported best hyperparameters.

All baselines use the same Llama-70b base model for fair

comparison. For IRPO and ToT, we use the same maximum

iteration count (T = 10) and convergence criteria as ACO-

ToT.

5.4. Evaluation Metrics

For each task, we measure the success rate of the model, by

percentage of problems solved correctly. To monitor the al-

gorithm we measure both convergence speed, or number of

iterations until convergence, and path quality metrics, given

by average path length, mean coherance score, and expert

agreement rate.

6. Results and Analysis

6.1. Main Results

Table 1 presents the performance comparison across all

tasks:

Table 1. Performance comparison across tasks (accuracy %)

Method GSM8K ARC-Challenge MATH

CoT 55.6 77.8 12.5

ToT 68.3 82.1 16.4

IRPO 81.6 86.7 20.8

ACO-ToT (Ours) 84.2 88.9 22.6

ACO-ToT demonstrates substantial performance gains

across all evaluation tasks, achiving absolute improve-

ments of 28.6%, 11.1%, and 10.1% over standard CoT

prompting on GSM8K, ARC-Challenge, and MATH re-

spectively. These improvements are particularly notewor-

thy when compared to reinforcement learning approaches

like IRPO. IRPO shows significant improvements in early

iterations, with gains of 17.5%, 4.9%, 3.1%, and 0.5%

across its first four iterations before performance saturates.

Similarly, ACO-ToT converges to high-quality solutions

within 6-8 iterations for standard problems, extending to

10-12 iterations for more complex MATH problems, and

yielding consistently higher quality solutions than IRPO.

This rapid convergence manifests in a characteristic per-

formance curve: steep improvement in the first 3-4 itera-

tions followed by asymptotic stabilization, indicating effi-

cient exploration of the reasoning space. The algorithm’s

performance-to-computation ratio is particularly favorable,

as it achieves state-of-the-art results without the computa-

tional overhead of RL training procedures or the extensive

sampling requirements of other methods.

6.2. Analysis of Path Properties

We analyze the properties of converged reasoning paths

based on previous evaluation metrics.

Path length distribution allows us to consider the supposed

complexity of problems given by datasets: on average,

GSM8K had 4.8 steps (σ = 1.3), ARC-Challenge had

4.2 steps (σ = 1.1), and MATH had 6.1 steps (σ = 1.6).

Additionally, our 82% average agreement rate between ex-

perts on optimal paths also resulted in higher agreement.

In later data analysis, we found that agreement rate cor-

relates strongly with solution accuracy with an r-value of

0.78. Additional metrics included pheromone concentra-

tion, which showed that optimal paths show 2.8× higher

pheromone concentration vs suboptimal. The concentra-

tion gradient steepened over iterations and, when corrob-

orated by previous results, demonstrates that the iterative

approach to refining CoTs was largely effective.
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Figure 3. Convergence analysis of ACO-ToT showing (left) per-

formance metrics and (right) path properties across iterations. The

algorithm typically converges after 3-4 iterations, with accuracy

improving from 55.6% to 81.6%, expert agreement reaching 86%,

and coherence scores stabilizing at 82%. Path lengths decrease

and stabilize at 4.4 steps on average, while the ratio of pheromone

concentration between optimal and suboptimal paths reaches 2.4.

6.3. Ablation Studies

We conduct extensive ablation studies to analyze the impact

of different components in ACO-ToT, eventually settling on

the following hyperparameters as an optimal trade-off be-

tween mixture-of-experts idea diversity and computational

cost without sacrificing the accuracy of final answers.

Number of LLM Ants Performance saturates around 5 ex-

perts, suggesting this is a happy medium between MoE di-

versity and computational cost (Table 2a).

Pheromone Parameters The optimal balance between ex-

ploitation (α = 1.0) and exploration (β = 2.0) yields best

performance across tasks (Table 2b). This result follows

from expecting large trees and allowing differing opinions

to attempt to come to better convergences, e.g., Science

Expert would be encouraged to explore the tree instead of

following a Mathematical Expert and lay pheromone else-

where, motivating a search for a global minimum instead

of possible local minima.

Scoring Components All three scoring components con-

tribute to performance, with coherence and MoE being par-

ticularly important (Table 3a).

Expert Diversity Diverse expert specialization (mathe-

matical, scientific, logical, common sense, and domain-

specific) outperforms homogeneous expert configurations

(Table 3b). This suggests that a heavier MoE approach was

rewarded with more generally acceptable reasoning steps

towards a solution.

6.4. Summary of Findings

Our results demonstrate several key findings, mainly: ACO-

ToT consistently outperforms existing methods across all

tasks, with particularly strong gains on complex reason-

ing problems like GSM8K and MATH. The algorithm typ-

ically converges within 6-8 iterations, with more complex

problems requiring more iterations. However, if required,

performance improves rapidly in early iterations before

plateauing.

Our ablation trials found that expert diversity is crucial

– having specialized LLMs for different aspects of rea-

soning leads to better exploration of the solution space.

The pheromone mechanism laid by these experts effec-

tively guides the search, with optimal parameters α = 1.0
and β = 2.0 suggesting a focus on exploration allows

the ant LLMs to converge timely while exploring reason-

ing through the tree. As for optimization, we found that

all three components of the scoring function (coherence,

length penalty, and mixture of experts) contribute meaning-

fully to performance.

7. Related Work

7.1. Chain-of-Thought and Tree-of-Thought

Prompting

Recent advances in prompting strategies have revealed

emergent reasoning in large language models (LLMs).

Chain-of-Thought (CoT) prompting, introduced by

(Wei et al., 2023), demonstrates that explicitly generating

intermediate reasoning steps (e.g.,“Let’s think step by

step”) improves performance on arithmetic, commonsense,

and symbolic reasoning tasks. However, CoT suffers

from three key limitations: (1) its linear, step-by-step

structure propagates errors in long reasoning chains, (2)

it lacks mechanisms to backtrack or explore alternative

paths, and (3) manual curation of high-quality exem-

plars is labor-intensive. To address error propagation,

Self-Consistency (Wang et al., 2023) aggregates multiple

CoT paths via majority voting, improving accuracy on

7
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GSM8K. However, this method scales poorly due to its

brute-force sampling strategy. Concurrently, Zero-Shot

CoT (Kojima et al., 2023) prompted models to ”think step

by step”, but it retained CoT’s linearity and struggled with

tasks requiring global planning (e.g., The Game of 24,

which achieved a low success rate). The Tree-of-Thought

(ToT) framework (Yao et al., 2023) introduces non-linear

reasoning by exploring multiple paths as a search tree,

enabling backtracking and look-ahead. ToT improves

Game of 24 success rates to 74% with GPT-4, but its

fixed tree structure limits scalability to complex tasks with

exponential search spaces.

7.2. Optimization Techniques for Language Model

Inference

Optimizing LLM inference for reasoning tasks has focused

on decoding strategies and feedback mechanisms. IRPO

(Bai et al., 2022) iteratively refines reasoning paths using

human preference data, improving MATH benchmarks.

However, IRPO’s use of human feedback limits its real-

world applicability. Guided Decoding (Li et al., 2023) in-

corporates domain-specific heuristics (e.g., mathematical

rules) during generation but requires task-specific tuning

and failed to generalize. Automatic CoT (Zhang et al.,

2022) automates exemplar generation using LLMs to pro-

duce diverse reasoning chains, matching manual CoT per-

formance on 10 reasoning tasks. However, error cor-

rection remains challenging due to noisy self-generated

chains. Additionally, Active Prompting (Diao et al., 2024)

uses uncertainty-aware exemplar selection to improve CoT

reliability but requires labeled validation data. ACS

(Arias et al., 2024) introduces an adaptive contrastive

search to balance diversity and coherence in text genera-

tion. However, its focus on creativity limits its utility for

structured reasoning.

7.3. Biologically-Inspired Optimization for AI

Biologically inspired algorithms like ACO have been

adapted for neural architectures but rarely for reasoning.

DeepACO (Ye et al., 2023) combines ACO with deep RL

for combinatorial optimization, outperforming traditional

solvers on TSP. However, it focuses on low-level graph

traversal rather than semantic reasoning. Next, the Neu-

ral Architecture Search with ACO (Lankford & Grimes,

2024) optimizes model designs but ignores in-context rea-

soning dynamics. In the Cumulative Reasoning paper

(Zhang et al., 2024), researchers employ iterative hypoth-

esis refinement similar to ant foraging, improving factual-

ity in open-domain question and answer. However, it lacks

explicit exploration-exploitation mechanisms for path opti-

mization.

7.4. Reasoning Enhancement Techniques

Recent work has targeted specific reasoning failures.

Faithful CoT (Lyu et al., 2023) grounds reasoning steps

in external knowledge bases, reducing hallucinations.

STaR (Zelikman et al., 2022) bootstraps reasoning via self-

training but requires fine-tuning. Least-to-Most Prompt-

ing (Zhou et al., 2023) decomposes complex problems into

subquestions, improving compositional generalization but

struggling with interdependent steps.

8. Conclusion

In this work we presented ACO-guided Tree of Thought

(ACO-ToT), a novel approach to enhancing language mod-

els’ reasoning capabilities by combining ant colony opti-

mization with chain-of-thought prompting. Our method

demonstrates that incorporating neuroscience-inspired col-

lective search mechanisms into language model inference

can substantially improve problem-solving performance.

The algorithm achieves significant improvements over ex-

isting approaches across various reasoning benchmarks,

with accuracy gains of 28.6% on GSM8K, 11.1% on ARC-

Challenge, and 10.1% on MATH compared to standard

chain-of-thought prompting.

While effective, our approach has several limitations. First,

the computational cost of running multiple LLM experts

and iterations may be prohibitive for some applications.

Second, the performance depends heavily on the quality of

expert diversity and pheromone parameter tuning. Third,

the current implementation requires manual specification

of scoring functions and convergence criteria.

Future work could explore several promising directions,

including the automated tuning of pheromone parameters

and scoring weights, integration with other search algo-

rithms like MCTS or A*, development of more sophisti-

cated expert specialization strategies, investigation of meta-

learning approaches to improve convergence speed, and an

extension to multi-modal reasoning tasks.

Impact Statement

This work introduces a novel approach to optimizing lan-

guage model reasoning paths through biologically-inspired

collective search mechanisms. By adapting ant colony

optimization principles to guide chain-of-thought reason-

ing, our method enables more robust and efficient problem-

solving across complex mathematical, scientific, and logi-

cal reasoning tasks. While the immediate implications are

primarily academic, focused on improving automated rea-

soning systems’ accuracy and efficiency, potential down-

stream applications could include educational support sys-

tems, automated theorem proving, and scientific discovery
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assistance. However, these applications would require addi-

tional safeguards and careful consideration of fairness, bias,

and transparency before deployment in real-world settings.

As with any advancement in AI reasoning capabilities, we

acknowledge the broader societal implications while main-

taining our current focus on fundamental research in con-

trolled environments, emphasizing the importance of re-

sponsible development practices for any future real-world

applications.
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A. Implementation Details

A.1. Hyperparameter Settings

• Number of LLM ants m = 5

• Pheromone evaporation rate ρ = 0.1

• Exploitation vs exploration weights α = 1, β = 2

• Path quality weights w1 = 0.4, w2 = 0.3, w3 = 0.3

• Maximum iterations T = 10 or until convergence

• Convergence threshold: path stability for 3 consecutive iterations

A.2. Expert Models

The five distinctly fine-tuned LLM experts:

• Mathematical reasoning expert (fine-tuned on ProofNet)

• Scientific reasoning expert (fine-tuned on ScienceQA)

• Logical deduction expert (fine-tuned on LogiQA)

• Common sense reasoning expert (fine-tuned on CSQA)

• Domain-specific expert (fine-tuned on task-specific data)

A.3. Computational Resources

All experiments were run using 8 NVIDIA A100 GPUs with 80GB memory. Average runtime per task:

• GSM8K: 8.2s

• ARC-Challenge: 6.5s

• MATH: 12.4s

A.4. Prompt Information

The prompt used for all three datasets was modeled after the GSM8K dataset, and is as follows:

Imagine you are trying to solve a math problem with a step-by-step approach.

At each step, you should propose a single next step to solve the problem

involving a single arithmetic option. If there are multiple options for how

to proceed, you should generate up to 3 options.

The format of the problem is as below, follow this format only

Input: XXXX

Steps taken so far: YYYY

Output: ZZZZ

NOTE: The options should not be sequential or connected with each other, each

option should be in a way that it can be evaluated independently. Don’t jump

to the result directly.
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IMPORTANT: **MAKE SURE NOT TO HAVE THE DIRECT ANSWER IN YOUR POSSIBLE STEPS

OUTPUT, JUST MAKE ONE STEP AT A TIME.**

Solved Example:

Example 1

Input: "Jasper will serve charcuterie at his dinner party. He buys 2 pounds

of cheddar cheese for $10, a pound of cream cheese that cost half the price

of the cheddar cheese, and a pack of cold cuts that cost twice the price of

the cheddar cheese. How much does he spend on the ingredients?"

Steps take so far: [Calculate the price of cheddar cheese which is $10

(given)]

Output: Possible independent steps:

1) Calculate the price of cold cuts which is 2*10 = $20.

2) Calculate the price of cream cheese which is 10/2 = $5 per pound.

Example 2

Input: "Weng earns $12 an hour for babysitting. Yesterday, she just did 50

minutes of babysitting. How much did she earn?"

Steps taken so far: [None]

Output: Possible next steps:

1) Convert the minutes of babysitting to hours.

2) Convert the wage per hour to wage per minute.

Example 3

Input: "James writes a 3-page letter to 2 different friends twice a week.

How many pages does he write a year?"

Steps taken so far: [Number of letter written to 1 friend in a week = 2 as

he writes twice a week]

Output: Possible next steps:

1) Number of letter written to 2 friends in a week = 2*2 = 4 letters a week.

2) Calculate the number of pages written to 1 friend in a week = 2*3 = 6

pages.

Now give the possible independent next steps for the below question, making

one specifically numerical step at a time to solve the problem, without

jumping to a proposed answer solution or repeating previous answer steps.

Input: "[problem here]"

Steps taken so far: [previous steps here]
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Output:

1)

A.5. Tree-of-Thought Generation Algorithm

Algorithm 2 Algorithm for generation Tree of Thoughts T based on problem x.

Require: Problem x, central LLM πc, thought generator G() max depth D, branches B
Ensure: Tree-of-Thoughts T

1: Initialize graph and storage:

2: T = (V,E), V ← p {Tree Root}
3: u← [{p}, {}, ..., {} {Set to manage unique thoughts}
4: Main generation loop:

5: for d = 0 to D − 1 do

6: for all node ν at depth d do

7: p← FindAncestors(ν, T )
8: o← G(πc, x, p)
9: t← ExtractThoughts(o,B)

10: for all thought τ in t do

11: if τ not in ud then

12: ud ← ud ∪ {τ}
13: V ← t, E ← (pd, t)) {Adds thought at d+ 1}
14: end if

15: end for

16: end for

17: end for

18: return T

B. Ablation Results

Tables contained here include information from the ablation tests in order to pick optimal hyper-parameters for highest

accuracy. Information here is analyzed above:

(a) Effect of number of LLM experts on performance (%)

# Experts GSM8K ARC MATH

2 75.2 82.4 16.1

3 77.8 84.1 17.9

5 81.6 86.7 20.8

7 81.9 86.9 20.9

8 82.0 87.0 21.0

(b) Impact of exploitation (α) vs exploration (β) weights

α β GSM8K ARC MATH

0.5 2.0 77.3 83.2 18.4

1.0 2.0 81.6 86.7 20.8

2.0 2.0 79.1 84.5 19.2

1.0 1.0 76.8 82.9 17.9

(a) Ablation of scoring function components

Components GSM8K ARC MATH

Full (C+L+M) 81.6 86.7 20.8

Only Coherence (C) 75.3 81.2 16.4

Only Length (L) 72.1 79.8 15.2

Only MoE (M) 76.8 82.5 17.3

C+L 77.9 83.4 18.1

C+M 79.2 84.9 19.4

L+M 76.1 81.8 16.9

(b) Impact of expert specialization

Expert Configuration GSM8K ARC MATH

Full Diversity 81.6 86.7 20.8

Math-only 79.2 82.1 19.4

Science-only 76.8 84.3 17.2

Logic-only 77.5 83.1 18.1

Random Mix 75.9 81.4 16.8
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